If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+35x-102=0
a = 7; b = 35; c = -102;
Δ = b2-4ac
Δ = 352-4·7·(-102)
Δ = 4081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-\sqrt{4081}}{2*7}=\frac{-35-\sqrt{4081}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+\sqrt{4081}}{2*7}=\frac{-35+\sqrt{4081}}{14} $
| 4x–17=x | | 2x=24-18 | | 1-x/4-2x+2/6=x/8 | | .−118+11x=x+62 | | 2x=18-24 | | 55=7x-5 | | 1/2(6c-4=4+c | | -15=5(y+4)+2y | | -15=5y+4)+2y | | 5v+4(v-2)=-26 | | t-96/4=-1 | | .−6n−20=−2n+4−12n | | 7(u+7)-5u=39 | | 1/3-2y/9=18 | | 98=5x+22 | | 42=u/3+13 | | m-61/8=115/6 | | 2x/5-4=8-3x/5 | | 10/6x/4=2(x+17) | | -4(3a-2)=33-7a | | 3(-1y+2)=12 | | -4(3a-2)=33 | | 83-x=229 | | -7(-2-4b)=-38+2b | | -7(-2-4b)=-38 | | 18/36=n/10 | | 3=7x-6 | | 44/15=n/10 | | 2)5x+2x=14 | | K=0.7,y=4 | | 4-12y+8y-21=-5 | | -0.2(10x-15)=9 |